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Abstract. We use chiral perturbation theory to evaluate the scattering amplitude for the process π+K− →
π+K− at leading and next-to-leading orders in the chiral counting and in the presence of isospin breaking
effects. We also discuss the influence of the latter on the combination of the S-wave πK scattering lengths
which is relevant for the 2S–2P energy level shift of Kπ atoms.

1 Introduction

The study of hadronic atoms has become a very active
field. Many experiments have been conducted to provide
a very precise measurement of the characteristics of these
atoms [1–5]. As theory is concerned, these experimental re-
sults are highly interesting since they allow a direct access
to hadronic scattering lengths by providing thus valuable
information about the fundamental properties of QCD at
low energy. For instance, the presently running DIRAC ex-
periment aims at measuring the pionium lifetime τ with a
10% accuracy [1]. This would allow to determine the dif-
ference a0

0 − a2
0 with a 5% precision using the Deser-type

relation [6,7]

τ−1 ∝ (a0
0 − a2

0
)2

, (1.1)

where aI
l is the l-wave ππ scattering length in the channel

with total isospin I. On the other hand, chiral perturba-
tion theory (ChPT) [8–10] predictions for the scattering
lengths have reached a precision of 2% [11]. Once the fi-
nal results from DIRAC are available, ChPT will therefore
be subjected to a serious test. Before confronting the ex-
perimental determination with the ChPT prediction, it is
desirable to keep under control all sources of corrections
to the relation (1.1). To do so, bound state calculations
were performed using different approaches, such as poten-
tial scattering theory [12,13], 3D-constraint field theory
[14], the Bethe–Salpeter equation [15] and non-relativistic
effective Lagrangians [16,17]. For a review on the subject
and a comparison between the various methods we refer
the reader to [18]. Within the framework of non-relativistic
effective Lagrangians, the correct expression of relation
(1.1) which includes all isospin breaking effects at leading
order (LO) and next-to-leading order (NLO) was found in
[19] to be
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τ−1 =
1
9
α3 (4M2

π± − 4M2
π0 − M2

π±α2)1/2 A2(1 + K).

(1.2)
In the previous equation, α stands for the fine-structure
constant, A and K have the following expansions [19] in
powers of the isospin breaking parameter κ ∈ [α, (md −
mu)2]

A = − 3
32π

ReA+−;00
thr. + o(κ), (1.3)

K =
1
9

(
M2

π±

M2
π0

− 1
)(

a0
0 + 2a2

0
)2

− 2α
3

(lnα − 1)
(
2a0

0 + a2
0
)

+ o(κ). (1.4)

The quantity of interest,

− 3
32π

ReA+−;00
thr. = a0

0 − a2
0 + h1(md − mu)2 + h2α, (1.5)

represents the real part of the π+π− → π0π0 scattering
amplitude at order κ. It has to be calculated at threshold
within ChPT to any chiral order and from which are sub-
tracted the singular pieces behaving like q−1 and ln q, q
being the center-of-mass three-momentum. While h1 van-
ishes, the coefficient h2 was calculated in [20] at O(e2p2)
where p stands for a typical external momentum and e for
the electric charge.

The first DIRAC proposal [1] also planned to measure
the pionium 2S–2P energy level shift ∆E. The possibility
to perform such a measurement was discussed in [21]. A
simultaneous measurement of τ and ∆E would allow one
to pin down a0

0 and a2
0 separately, since [22]

∆E ∝ 2a0
0 + a2

0. (1.6)

Bound state calculations of the isospin breaking correc-
tions to (1.6) were done in [13] using potential scatter-
ing theory (the main contribution comes from vacuum
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polarization effects and can also be found in [23]). Non-
relativistic effective Lagrangian calculations concerning
∆E are not available. One might however expect that they
will involve the quantity ReA+−;+−

thr. for the corresponding
π+π− → π+π− process. Electromagnetic corrections to
the scattering amplitude for this process have been ob-
tained at O(e2p2) in [24].

The proposal [1] was followed by another one extend-
ing the DIRAC project by considering the possibility of
measuring the characteristics of Kπ atoms with a 20%
accuracy [5]. The determination of the lifetime and en-
ergy level shift for Kπ atoms will give access to the S-
wave πK scattering lengths a

1/2
0 and a

3/2
0 , allowing one

to test ChPT in the three-flavor sector. Likewise, we may
expect that the relevant quantities in the final expressions
for the lifetime and the level shift will involve the scatter-
ing amplitudes for π−K+ → π0K0 and π+K− → π+K−,
respectively. In the case of the former, isospin breaking
corrections have already been discussed in [25,26]. The
aim of the present work is to provide a similar treatment
for the latter.

This paper is organized as follows. In Sect. 2, the scat-
tering amplitude for the process π+K− → π+K− will be
calculated at NLO including isospin breaking effects and
ignoring the emission of real soft photons. Being lengthy,
the expression for the scattering amplitude is displayed in
Appendix A. We continue with Sect. 3, where the analytic
expressions for a

1/2
0 and a

3/2
0 at NLO are given. We then

discuss the sensitivity of the scattering lengths to the size
of the next-to-next-to-leading order (NNLO) by evaluat-
ing them using various inputs for the low-energy constants
(LEC’s). The threshold expansion of this process is per-
formed in Sect. 4 where the effects of isospin breaking on
the scattering lengths are evaluated. Finally, Appendix B
collects the expressions for the loop functions needed in
the calculation.

2 Charged pion and kaon elastic scattering

The elastic scattering process

π+(p) + K−(k) → π+(p′) + K−(k′), (2.1)

is studied in terms of the Lorentz invariant Mandelstam
variables

s = (p + k)2, t = (p − p′)2, u = (p − k′)2,

satisfying the on-shell relation s+ t+u = 2(M2
π± +M2

K±).
These variables are related to the center-of-mass three-
momentum q and scattering angle θ by

s =
(√

M2
π± + q2 +

√
M2

K± + q2

)2

,

t = −2q2(1 − cos θ), (2.2)

u =
(√

M2
π± + q2 −

√
M2

K± + q2

)2

− 2q2(1 + cos θ).

Let M+−;+− and M++;++ denote the respective scatter-
ing amplitudes for the process (2.1) and its crossed chan-
nel reaction π+K+ → π+K+. Then, in the isospin limit,
defined by the vanishing of both the electric charge e and
the up and down quark mass difference (mu = md, e = 0),
the following relations hold:

M+−;+−(s, t, u) =
2
3
T 1/2(s, t, u) +

1
3
T 3/2(s, t, u),

M++;++(s, t, u) = T 3/2(s, t, u), (2.3)

with T I (I = 1/2, 3/2) being the isospin amplitudes. The
above processes are related by s ↔ u crossing which con-
strains T I by

2T 1/2(s, t, u) = 3T 3/2(u, t, s) − T 3/2(s, t, u). (2.4)

This is no more valid when isospin breaking effects, gen-
erated by δ = md −mu and α = e2/(4π), are switched on.
In this case s ↔ u crossing is expressed as

M+−;+−(s, t, u) = M++;++(u, t, s). (2.5)

The effect of a non-zero value for δ can be fully analyzed by
means of the strong sector chiral Lagrangian constructed
in [27]. Treating isospin violation of electromagnetic ori-
gin requires the extension of ChPT in order to include vir-
tual photons. This can be done by building operators in
which photons occur as explicit dynamical degrees of free-
dom. The chiral Lagrangian in the electromagnetic sector,
founded upon the chiral counting scheme O(e) = O(p),
was presented at NLO in [28,29].

We shall calculate the scattering amplitude (2.5) at
NLO including isospin breaking effects of both strong and
electromagnetic origin. Consistency requires that all of the
following chiral orders should be present; p2, e2, δ, p4, e2p2,
δp2, e4, δe2, δ2. From naive dimensional estimation, we be-
lieve that the last three orders are beyond the accuracy we
are looking for, and hence will be ignored in the following.
Furthermore, instead of δ, our results will be expressed in
terms of [27]

ε ≡
√

3
4

md − mu

ms − m̂
= 1.00 · 10−2,

which measures the rate of isospin violation with respect
to the violation of SU(3). Using Feynman graph tech-
niques, the amplitude (2.5) can be represented at NLO by
the one-particle-irreducible diagrams depicted in Fig. 1.

Although evaluating these diagrams is a simple exer-
cise in quantum field theory, it involves different masses
and thus produces lengthy expressions. These are dis-
played in Appendix A where we keep the contributions of
the various diagrams separated. At this stage, it is useful
to mention that these expressions are scale independent
but infrared divergent. Since only observables are infrared
safe, these infrared divergencies should cancel in the ex-
pression for the cross section where virtual photons as
well as real soft photons must be taken into account. The
O(α) soft photon cross section corresponding to an arbi-
trary matrix element was calculated in [30]. By applying
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Fig. 1a–f. The various types of Feynman diagrams encoun-
tered in the charged πK scattering to one-loop order and ignor-
ing O(e4). The Born-type diagram is represented by a. Besides
the contribution from the LEC’s (the full square), it contains
the tree contribution including bare mass and wave function
renormalization effects. Diagram b represents the tadpole-type
part of the amplitude. s-, t- and u-channel parts are given by
diagram c. The one-photon contribution to the amplitude fol-
lows from diagrams d and e. We refer to diagram f as the
form-factor-type where the full circle is made explicit in Fig. 2

�
(a)
�

(b)
�

(c)

Fig. 2a–c. The electromagnetic vertex function of a charged
meson to one-loop order. The full square takes into account the
contribution from the LEC’s just as the tree contribution in-
cluding effect of wave function renormalization. Only diagrams
of order O(ep3) are shown

to the present calculation the general formula taken from
[30], we checked that the terms in lnmγ cancel with those
of our expressions.

3 Scattering lengths

We are interested in the S-wave πK scattering lengths [31–
33]. To this end, it is convenient to introduce the partial
wave amplitudes tIl defined in the s-channel by

T I(s, cos θ) = 32π
∑

l

(2l + 1)Pl(cos θ)tIl (s), (3.1)

where l is the angular momentum of the πK system and
the Pl’s are the Legendre polynomials. Near threshold the
partial wave amplitudes can be parametrized in terms of
scattering lengths aI

l and slope parameters bI
l . In normal-

ization (3.1), the real part of the partial wave amplitudes
reads

RetIl (s) = q2l
[
aI

l + bI
l q

2 + O(q4)
]
. (3.2)

At NLO in ChPT no analytic expressions for the scat-
tering lengths can be found anywhere. This is not the
case with other approaches such as heavy-kaon ChPT [34]
where the expansion parameter is Mπ/MK in addition to

Mπ/(4πF0) or MK/(4πF0) for ChPT1. Obviously, at any
order in both expansions, a matching between the two ap-
proaches is possible. Getting analytic expressions for a

1/2
0

and a
3/2
0 is a straightforward matter. Using the expres-

sion of isospin amplitude T 3/2 given in [35], (2.2)–(2.4)
together with (3.1) and (3.2) lead to the following NLO
expressions for the scattering lengths:

32πa1/2
0 =

2Mπ±MK±

FπFK

{
1 +

4
FπFK

(M2
π± + M2

K±)Lr
5

− 1
1152π2FπFK

1
M2

K± − M2
π±

×
[
9M2

π±(11M2
K± − 5M2

π±) ln
M2

π±

µ2

+ 2M2
K±(9M2

K± − 55M2
π±) ln

M2
K±

µ2

+ (36M4
K± + 11M2

K±M2
π± − 9M4

π±) ln
M2

η

µ2

]}

+
M2

π±M2
K±

576π2F 2
πF 2

K

{
172 + 576π2B(MK± ,Mπ±)

− 192π2B(MK± ,−Mπ±)

+ 4608π2
[
4(Lr

1 + Lr
2) + 2(L3 − 2Lr

4) − Lr
5

+ 2(2Lr
6 + Lr

8)
]

+
1

M2
K± − M2

π±

×
[
99M2

π± ln
M2

π±

µ2 − 2(67M2
K± − 8M2

π±) ln
M2

K±

µ2

+ (24M2
K± − 5M2

π±) ln
M2

η

µ2

]}
,

32πa3/2
0 = −Mπ±MK±

FπFK

{
1 +

4
FπFK

(M2
π± + M2

K±)Lr
5

− 1
1152π2FπFK

1
M2

K± − M2
π±

×
[
9M2

π±(11M2
K± − 5M2

π±) ln
M2

π±

µ2

+ 2M2
K±(9M2

K± − 55M2
π±) ln

M2
K±

µ2

+ (36M4
K± + 11M2

K±M2
π± − 9M4

π±) ln
M2

η

µ2

]}

+
M2

π±M2
K±

576π2F 2
πF 2

K

{
172 + 384π2B(MK± ,−Mπ±)

+ 4608π2
[
4(Lr

1 + Lr
2) + 2(L3 − 2Lr

4)

1 Throughout this paper, Mπ and MK respectively represent
the pion and kaon masses in the isospin limit, Mη the eta mass,
F0 the coupling of Goldstone bosons to axial currents in the
chiral limit
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Table 1. Values of the Lr
i ’s obtained in [40] by using large Nc

arguments [41] and fitting data from [42] to ChPT predictions
at NLO (set I) as also at NNLO (set II). Set III is the equivalent
of set II with data coming from the preliminary analysis [43]
of the E865 experiment

set I set II set III

103Lr
1(Mρ) 0.46 ± 0.23 0.53 ± 0.25 0.43 ± 0.12

103Lr
2(Mρ) 1.49 ± 0.23 0.71 ± 0.27 0.73 ± 0.12

103Lr
3(Mρ) −3.18 ± 0.85 −2.72 ± 1.12 −2.35 ± 0.37

103Lr
4(Mρ) 0 ± 0.5 0 ± 0.5 0 ± 0.5

103Lr
5(Mρ) 1.46 ± 0.2 0.91 ± 0.15 0.97 ± 0.11

103Lr
6(Mρ) 0 ± 0.3 0 ± 0.3 0 ± 0.3

103Lr
8(Mρ) 1.00 ± 0.20 0.62 ± 0.20 0.60 ± 0.18

− Lr
5 + 2(2Lr

6 + Lr
8)
]

+
1

M2
K± − M2

π±

×
[
99M2

π± ln
M2

π±

µ2 − 2(67M2
K± − 8M2

π±) ln
M2

K±

µ2

+ (24M2
K± − 5M2

π±) ln
M2

η

µ2

]}
. (3.3)

The previous expressions were obtained by using the
isospin limit [36] of the Gell-Mann–Okubo relation (4.5)
in the NLO contributions. Fπ and FK stand for the pion
and kaon decay constants respectively. Their NLO ex-
pressions in the isospin limit can be found in [27]. For
their numerical values we will use Fπ = 92.4 MeV [37]
and FK = 1.22Fπ [38,39]. The Li’s are the LEC’s weight-
ing O(p4) operators in the effective Lagrangian of [27] and
values of which are collected in Table 1 with various exper-
imental determinations. Finally, in order to obtain com-
pact formulae, we have introduced the function B which
expression is displayed in Appendix B. For historical rea-
sons [31], the scattering lengths were defined in terms of
the charged pion and kaon masses (Mπ± = 139.570 MeV,
MK± = 493.677 MeV). Furthermore, F 2

0 was renormal-
ized as FπFK instead of F 2

π . Nevertheless, if one wishes to
adopt the second choice for the renormalization of F0, the
isospin limit of (4.7) can be used.

We applied several checks to expressions (3.3). They
are scale independent; the scale dependence µ of the chi-
ral logarithms is compensated by the one governing the
renormalization group equations [27] of the running cou-
plings Lr

i (µ) ≡ Lr
i . Even so, all of our expressions will be

evaluated at the scale µ = Mρ = 770 MeV. Expanding ex-
pressions (3.3) to the fourth order in powers of Mπ±/MK±

we recover the combinations of scattering lengths obtained
within the framework of heavy-kaon ChPT [34]. Using the
same inputs as in [35] we come across their numerical esti-
mates again. These expressions are consistent analytically
and numerically with the combinations 2a3/2

0 + a
1/2
0 and

a
1/2
0 − a

3/2
0 evaluated in [25].

We shall now update the numerical evaluation of [35]
for the scattering lengths. All inputs have been given ex-
cept the eta mass to which we assign the value Mη =

547.30 MeV. We will evaluate a
1/2
0 and a

3/2
0 using each

of the sets defined in Table 1 with both renormalization
choices for F 2

0 . The interest of this is the following: since
the difference between Fπ and FK in the NLO pieces is of
O(p6), then any difference in the values for the scattering
lengths due to the renormalization choice for F0 could be
viewed as an indication for the size of the NNLO correc-
tions. Note that set I and set II were obtained by fitting
the same experimental data to one- and two-loop ChPT
predictions respectively. It follows that the possible varia-
tion in the values for the scattering lengths due to the use
of either set measures the influence of the NNLO on the
NLO which, in a way, reflects the rate of convergence of
the chiral expansion in powers of ms. While Table 2 col-
lects our numerical results for the scattering lengths, we
concentrate on two specific combinations, 2a1/2

0 +a
3/2
0 and

a
1/2
0 − a

3/2
0 . For the latter, the variations are about ∼ 9%

due to the renormalization choice for F0 and ∼ 1% (∼ 5%)
due to the choice of set II instead of set I with F 2

0 = F 2
π

(F 2
0 = FπFK). With regard to the former, the renormal-

ization choice for F0 induces about ∼ 17% of variation
versus ∼ 10% due to the choice of the set for both renor-
malization choices. Notice that up to a 10% accuracy, the
combination a

1/2
0 − a

3/2
0 is neither altered by the renor-

malization choice for F0 nor by the choice between set I
and set II. This result has already been noticed in [25]
where it was concluded that the theoretical prediction for
a
1/2
0 −a

3/2
0 is so clean that if this difference was accurately

measured, one might or might not confirm the validity of
standard three-flavor ChPT.

4 Isospin violation at NLO

The scattering lengths are well-defined quantities in the
absence of radiative corrections. When virtual photons ef-
fects have to be taken into account, things must be han-
dled with care. To prevent any confusion, we shall perform
step by step the threshold expansion of the amplitude (2.5)
with the help of Appendices A and B. When expanded in
powers of q, the real part of (2.5) can be put in a form
similar to the one used for the ππ scattering case [20]:

ReM+−;+−(s, t, u) =
Mπ±MK±

FπFK

e2

4
µπK

q
+ e2

(
u − s

t

)
+ ReM+−;+−

thr. + O(q), (4.1)

ReM++;++(s, t, u) =
Mπ±MK±

FπFK

e2

4
µπK

q
+ e2

(
s − u

t

)
+ ReM++;++

thr. + O(q). (4.2)

The first two terms in the right-hand side of (4.1) should
be absorbed in the static characteristics of Kπ atoms [44–
46] by means of a bound state treatment. The term in
q−1 is due to the Coulomb photon exchanged between
the scattered particles in diagram (d) of Fig. 1. As for the
term where the dependence on the Mandelstam variables
is explicit, it corresponds to diagram (f) of Fig. 1 at tree
level and contains, besides the dependence on θ, a singular
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Table 2. ChPT predictions for the S-wave πK scattering lengths at NLO with two
possible renormalization choices for F0. Set I, set II and set III are defined in Table 1

F0 renormalization aI
0 set I set II set III

F 2
0 = F 2

π a
1/2
0 0.214 ± 0.016 0.202 ± 0.018 0.203 ± 0.013

a
3/2
0 −0.0557 ± 0.0166 −0.0660 ± 0.0185 −0.0644 ± 0.0133

F 2
0 = FπFK a

1/2
0 0.192 ± 0.011 0.177 ± 0.012 0.179 ± 0.009

a
3/2
0 −0.0613 ± 0.0113 −0.0651 ± 0.0125 −0.0644 ± 0.0090

piece behaving like q−2. The q- and θ-independent terms,
ReM+−;+−

thr. and ReM++;++
thr. , constitute the main topic

of this work. Their isospin limit is nothing else than the
threshold value of (2.3). Then, in order to keep a coherent
notation, they will be written in the following as

ReM+∓;+∓
thr. = 32πa0(+∓; +∓),

where

a0(+−; +−) =
1
3

(
2a1/2

0 + a
3/2
0

)
+ ∆a0(+−; +−),

a0(++; ++) = a
3/2
0 + ∆a0(++; ++), (4.3)

and the NLO expressions (3.3) were used for a
1/2
0 and a

3/2
0 .

Let us turn towards the calculation of the isospin breaking
quantities ∆a0. To begin with, we express the isospin limit
masses Mπ and MK figuring at NLO in terms of charged
and neutral masses as

M2
π → M2

π0 , 2M2
K → M2

K± + M2
K0 − γ(M2

π± − M2
π0),
(4.4)

where γ takes into account any deviation from Dashen’s
theorem [47] for which γ = 1. Although our results cor-
respond to γ = 1, we will use the value γ = 1.84 [48] as
an indicator for their sensitivity to the violation of the
Dashen theorem [49]. Furthermore, for simplification, the
modified Gell-Mann–Okubo relation

3M2
η → 2(M2

K± + M2
K0) − (2M2

π± − M2
π0), (4.5)

will be used everywhere except in the arguments of the
chiral logarithms where the eta mass is assigned to its
physical value. Nevertheless, in the final results, the effect
of ignoring ( 4.5) will also be considered. Next, still by
convention, the isospin limit is defined in terms of the
charged pion and kaon masses; the neutral ones should be
replaced according to

M2
π0 → M2

π± − ∆π, M2
K0 → M2

K± − ∆K .

The advantage of such a procedure is that, when ex-
panding a0 in powers of ∆π and ∆K , the zeroth order in
the expansion is automatically defined in terms of charged
masses and reproduces the expression for the correspond-
ing combination of scattering lengths as given by (4.3)
and (3.3). Although sufficient for our purposes, the ex-
pansion to first order in ∆π and ∆K is somewhat tedious,

especially when considering the loop functions. The cor-
responding expansions of the latter are collected in Ap-
pendix B. From this, the last step is achieved by replacing
∆π and ∆K in the NLO terms by their LO expressions

∆π → 2Z0e
2F 2

0 , ∆K → 2Z0e
2F 2

0 − 4ε√
3

(M2
K − M2

π),

which allow the following decomposition to be made:

32π∆a0(+−; +−) ≡ ∆π

FπFK
+

ε√
3
δ+−;+−
ε

+ 2Z0e
2F 2

0 δ+−;+−
Z0e2 + e2δ+−;+−

e2 ,

32π∆a0(++; ++) ≡ ∆π

FπFK
+

ε√
3
δ++;++
ε (4.6)

+ 2Z0e
2F 2

0 δ++;++
Z0e2 + e2δ++;++

e2 .

Once more, the renormalization choice for F0 was fixed
to F 2

0 = FπFK with the possibility of renormalizing as
F 2

0 = F 2
π offered by the relation

1
FπFK

=
1
F 2

π

{
1 +

4
F 2

π

(M2
π± − M2

K±)Lr
5

− 1
128π2F 2

π

[
5M2

π± ln
M2

π±

µ2 − 2M2
K± ln

M2
K±

µ2

− (4M2
K± − M2

π±) ln
M2

η

µ2

]

− ∆π

F 2
π

[
2Lr

5 − 1
128π2

(
4 + 5 ln

M2
π

µ2 − ln
M2

K

µ2 − ln
M2

η

µ2

)]

+
∆K

F 2
π

[
2Lr

5 − 1
128π2

(
1 + ln

M2
K

µ2 + 2 ln
M2

η

µ2

)]}
. (4.7)

One should note that the consistency of the chiral power
counting scheme requires that the mesons masses appear-
ing in (4.6) be set to their isospin limit. Using instead
physical masses induces corrections of higher order and
thus beyond the accuracy needed for the present work.

The isospin breaking term in (4.6) generated by the
difference between mu and md is given by

δ+∓;+∓
ε = ∓ MπMK

288π2F 2
πF 2

K

{
− 2304π2(M2

K − M2
π)Lr

5

+
1

4M2
K − M2

π

[
36M4

K + 563M2
πM

2
K − 135M4

π
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− 576π2M2
πM

2
KB(MK ,±Mπ)

]
+

1
M2

K − M2
π

[
27M2

π(8M2
K + M2

π) ln
M2

π

µ2

+ (9M4
K − 274M2

πM
2
K + 9M4

π) ln
M2

K

µ2

+ (18M4
K + 4M2

πM
2
K − 9M4

π) ln
M2

η

µ2

]}

+
M2

πM
2
K

288π2F 2
πF 2

K

{
8

4M2
K − M2

π

[
68M2

K − 19M2
π

− 12π2(32M2
K − 5M2

π)B(MK ,±Mπ)
]

+
1

M2
K − M2

π

[
9(6M2

K + 19M2
π) ln

M2
π

µ2

− 128(M2
K + M2

π) ln
M2

K

µ2

+ (74M2
K − 43M2

π) ln
M2

η

µ2

]}
. (4.8)

The isospin violating term due to the electromagnetic
difference between charged and neutral mesons masses
squared is found to read

δ+∓;+∓
Z0e2 = ± MπMK

1152π2F 2
πF 2

K

×
{

471δ+∓ − 768π2[12Lr
5 − B(MK ,±Mπ)]

− 64M2
K

4M2
K − M2

π

[1 − 18π2B(MK ,±Mπ)]

+
1

M2
K − M2

π

[
− 471∆πKδ−∓ − 38M2

K

− 288π2M2
KB(MK ,±Mπ)

+ 27(M2
K + 9M2

π) ln
M2

π

µ2 − 2(161M2
K + 11M2

π) ln
M2

K

µ2

+ (43M2
K + 31M2

π) ln
M2

η

µ2

]}

+
1

1152π2F 2
πF 2

K

M2
πM

2
K

M2
K − M2

π

×
[

78 + 9216π2Lr
5 − 864π2B(MK ,±Mπ)

+ 81 ln
M2

π

µ2 + 110 ln
M2

K

µ2 − 11 ln
M2

η

µ2

]
− 1

1152π2F 2
πF 2

K

× M4
π

M2
K − M2

π

[
64 + 9216π2[2Lr

4 + Lr
5 − 2(2Lr

6 + Lr
8)]

+ 63 ln
M2

π

µ2 − 5 ln
M2

η

µ2

]
− M4

K

576π2F 2
πF 2

K

×
{

64
4M2

K − M2
π

[1 + 18π2B(MK ,±Mπ)]

− 1
M2

K − M2
π

[
12 + 9216π2(Lr

4 − 2Lr
6 − Lr

8) (4.9)

+ 288π2B(MK ,±Mπ) − 27 ln
M2

K

µ2 − 34 ln
M2

η

µ2

]}
,

with δij representing the Kronecker symbol. Finally, vir-
tual photons induce the following correction

δ+∓;+∓
e2 = ± MπMK

144π2FπFK

1
M2

K − M2
π

×
{

6[5M2
K + 11M2

π − 384π2(M2
K − M2

π)Lr
9]

− 128π2(M2
K − M2

π)
× (3Kr

1 + 3Kr
2 − 18Kr

3 − 9Kr
4 + 4Kr

5 − 5Kr
6)

+
3

M2
K − M2

π

[
(11M4

K + 9M2
KM2

π + 12M4
π) ln

M2
π

µ2

+ (4M4
K − 39M2

KM2
π + 3M4

π) ln
M2

K

µ2

]}
− M2

πM
2
K

16π2FπFK

× 1
M2

K − M2
π

{
36 − 32π2(2Kr

3 − Kr
4 − 4Kr

10 − 4Kr
11)

+
1

M2
K − M2

π

[
(9M2

K + 23M2
π) ln

M2
π

µ2

− 5(3M2
K + 4M2

π) ln
M2

K

µ2

]}
+

2M4
π

3FπFK

1
M2

K − M2
π

× (12Kr
2 − 6Kr

3 + 3Kr
4 + Kr

5 + 7Kr
6

− 12Kr
8 − 6Kr

10 − 6Kr
11) +

M4
K

48π2FπFK

× 1
M2

K − M2
π

[
12 − 32π2(12Kr

2 + Kr
5 + 7Kr

6 − 12Kr
8

− 18Kr
10 − 18Kr

11) − 9M2
K

M2
K − M2

π

ln
M2

K

µ2

]
. (4.10)

It is important to emphasize that the virtual photon con-
tribution, as can be seen from (4.10), is safe from infrared
divergencies. The dependence on mγ appears at higher or-
ders in the expansions (4.1) and (4.2) in power of q. This
fact has already been noticed in [20].

For the numerical estimate of the isospin breaking ef-
fects we use M2

π0 = 134.976 MeV, M2
K0 = 497.672 MeV

and the values of the Lr
i ’s corresponding to set II of Ta-

ble 1 as our favorite ones. Concerning the LEC L9 en-
tering the expressions for the electromagnetic form fac-
tors of the pion and the kaon, its value will be taken as
Lr

9 = (6.9 ± 0.7) · 10−3. For the LEC’s in the electromag-
netic sector, their central values correspond to the ones
quoted in [50] where large Nc arguments [41] and reso-
nance saturation were used. Moreover, an uncertainty of
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±1/(16π2), coming from naive dimensional analysis, will
be attributed to each of the Kr

i ’s. In order to compare
the order of magnitude for the scattering lengths and the
isospin breaking corrections to those at NLO, let us recall
the following combinations from Table 2 corresponding to
the renormalization choice F 2

0 = FπFK :

1
3

(
2a1/2

0 + a
3/2
0

)
= 0.096 ± 0.012,

a
3/2
0 = −0.0651 ± 0.0125. (4.11)

For the process π+K− → π+K−, we thus obtain the fol-
lowing estimation for the isospin breaking effects:

1
32π

∆π

FπFK
= 1.2 × 10−3,

1
32π

ε√
3
δ+−;+−
ε = (2.3 ± 0.1) × 10−4,

1
32π

2Z0e
2F 2

0 δ+−;+−
Z0e2 = (1.4 ± 3.9) × 10−4,

1
32π

e2δ+−;+−
e2 = (−3.8 ± 31) × 10−4.

From this we deduce that

a0(+−; +−) = 0.097 ± 0.013, (4.12)

indicating that the isospin breaking effects induce a cor-
rection on the combination 2a1/2

0 +a
3/2
0 amounting to 1%.

As for the process π+K+ → π+K+, the results are

1
32π

∆π

FπFK
= 1.2 × 10−3,

1
32π

ε√
3
δ++;++
ε = (−1.4 ± 0.1) × 10−4,

1
32π

2Z0e
2F 2

0 δ++;++
Z0e2 = (−3.3 ± 3.9) × 10−4,

1
32π

e2δ++;++
e2 = (12.7 ± 31) × 10−4,

leading to

a0(++; ++) = −0.0631 ± 0.0129. (4.13)

Although the size of the correction on a
3/2
0 is slightly big-

ger (∼ 3%), it is the former combination, (4.12), that is
expected to enter the expression for the 2S–2P energy
level shift for Kπ atoms. Before concluding let us com-
ment on the effect induced on these results by deviations
from the Gell-Mann–Okubo relation and from Dashen’s
theorem. If one uses the physical eta mass instead of (4.5),
the central value in (4.12) increases by ∼ 0.0002. On the
other hand, variations of γ in (4.4) between 1 to 1.84 cause
deviations of order ∼ 10−5. Accordingly, deviations from
both Gell-Mann–Okubo relation and Dashen theorem in-
duce corrections which are beyond the accuracy we are
considering here.

5 Conclusions

This work was devoted to the study at NLO of isospin
breaking effects on the combination 2a1/2

0 +a
3/2
0 of S-wave

πK scattering lengths which is relevant for the 2S–2P en-
ergy level shift of Kπ atoms. We first gave analytic expres-
sions for the scattering lengths which allowed to evaluate
them using several sets for the values of the LEC’s and
with both replacements F 2

0 → FπFK and F 2
0 → F 2

π . The
particularity of these sets is that set I and set II for in-
stance were determined by fitting the same experimental
data to one- and two- loop ChPT expressions. For the
value of the afore-mentioned combination we obtained a
variation amounting to ∼ 17% due to the choice for the
replacement of F 2

0 . As for the choice between the two sets,
it induces a 10% variation. These numbers can be used as
indicators for the size of the NNLO corrections as well as
for the rate of convergence of the chiral expansion in pow-
ers of ms. We proceeded by performing, in parallel with
what has been done for the ππ scattering case, the thresh-
old expansion of the scattering amplitude for the process
π+K− → π+K− in the presence of photons. After sub-
tracting singular pieces, we evaluated the isospin breaking
corrections to the combination and noticed two features.

(i) Though the NLO corrections of both strong and elec-
tromagnetic origin are one order of magnitude less
than the LO ones, they cancel each other in the end.

(ii) Their central value represents ∼ 1% of the NLO
value for the combination 2a1/2

0 + a
3/2
0 and the un-

certainty affecting them is negligible with respect to
the one coming from the LEC’s in the strong sector.
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Appendix

A Scattering amplitude

The amplitude (2.5) will be devided into seven parts de-
pending on the nature of the corresponding Feynman di-
agrams

M+−;+− = MBorn + Mtadpole

+ Ms−channel + Mt−channel + Mu−channel

+ Mone−photon + Mformfactor. (A.1)

We distinguish three contributions to the Born part of the
amplitude (diagram (a) in Fig. 1)

MBorn = MBorn
tree + MBorn

p4 + MBorn
e2p2 .

The tree contribution, denoted by MBorn
tree , accounts for

the four-meson vertex derived from the leading order (LO)
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Lagrangian. Bare masses and meson wave functions being
renormalized, the result is as follows:

MBorn
tree =

1
2F 2

0
(M2

π± + M2
K± − u) +

∆π

F 2
0

+
1

2F 2
0

(M2
π± + M2

K± − u)

×
{

1
6

(5µπ0 + 3µη + 4µK0 + 6µπ± + 6µK±)

− 8
F 2

0
[2(M2

π + 2M2
K)Lr

4 + (M2
π + M2

K)Lr
5]

+ 2e2

[
− 1

8π2 − 1
16π2

(
ln

m2
γ

M2
π

+ ln
m2

γ

M2
K

)

− 2F 2
0 µ̃π − 2F 2

0 µ̃K − 4
9

(6Kr
1 + 6Kr

2 + 5Kr
5 + 5Kr

6)
]

− ε√
3

(µη − µπ) +
16
F 2

0

(
ε√
3

)
(M2

K − M2
π)Lr

5

}

+
M2

K±

6F 2
0

{
− 2

3
µη +

2ε√
3

(µη − µπ)

+
16
F 2

0

(
ε√
3

)
(M2

K − M2
π)(2Lr

8 − Lr
5)

− 8
F 2

0
[(M2

π + 2M2
K)(2Lr

6 − Lr
4) + M2

K(2Lr
8 − Lr

5)]

− e2

[
1

4π2 − 6F 2
0 µ̃K

− 4
9

(6Kr
1 + 6Kr

2 + 5Kr
5 + 5Kr

6 − 6K7 − 150Kr
8

− 2Kr
9 − 20Kr

10 − 18Kr
11)

]}
+

M2
π±

6F 2
0

{
− µπ0 +

1
3
µη

− 8
F 2

0
[(M2

π + 2M2
K)(2Lr

6 − Lr
4) + M2

π(2Lr
8 − Lr

5)]

− e2

[
7

4π2 − 42F 2
0 µ̃π − 4

9

(
6Kr

1 + 6Kr
2

+ 54Kr
3 − 27Kr

4 + 5Kr
5 + 5Kr

6 − 6K7 − 78Kr
8

− 8Kr
9 − 134Kr

10 − 126Kr
11

)]}

+
∆π

6F 2
0

{
3M2

π

8π2F 2
0

+ 54µπ + 28µK +
10
3

µη

+
16
F 2

0

[
− 3(M2

π + 2M2
K)Lr

4 − 3M2
KLr

5

+ 2(M2
π + 2M2

K)Lr
6 + (M2

π + M2
K)Lr

8

]}
. (A.2)

As usually, the tadpole integrals read

µP = M2
P µ̃P =

M2
P

32π2F 2
0

ln
M2

P

µ2 ,

and the difference between the charged and neutral meson
masses is symbolized by

∆P = M2
P ± − M2

P 0 .

Note that an infrared divergent piece appears in (A.2).
It comes from the charged meson wave function renormal-
ization and is regularized by assigning a fictitious mass
mγ to the photon. The counterterms contribution MBorn

p4

comes from the NLO Lagrangian of the strong sector [27]
and is put in the following form

MBorn
p4 =

1
F 4

0

8∑
i=1

PiL
r
i ,

P1 = 8(2M2
π± − t)(2M2

K± − t),

P2 = 4[(Σπ−K+ − s)2 + (Σπ−K+ − u)2],
P3 = 2(2M2

π± − t)(2M2
K± − t) + 2(Σπ−K+ − s)2,

P4 = −2
3

[
M2

π + 14M2
K − 24ε√

3
(M2

K − M2
π)
]

× (2M2
π± − t) − 2

3
(13M2

π + 2M2
K)(2M2

K± − t)

− 4
3

(M2
π + 2M2

K)(Σπ−K+ − s)

+
8
3

(M2
π + 2M2

K)(Σπ−K+ − u),

P5 = −2
3

(3M2
π0 + M2

K± − ∆π)(2M2
K± − t)

− 2
3

(M2
π0 + 3M2

K± − 3∆π)(2M2
π± − t)

− 8
3

(M2
π0 + M2

K± − ∆π)(Σπ−K+ − s)

+
4
3

(M2
π0 + M2

K± − ∆π)(Σπ−K+ − u),

P6 =
8
3

[
2M4

K + 15M2
πM

2
K + M4

π

− 2ε√
3

(2M4
K + 11M2

πM
2
K − 13M4

π)

]
,

P7 = 0,

P8 =
8
3

[
M4

K + 6M2
πM

2
K + M4

π

− 4ε√
3

(M4
K + 2M2

πM
2
K − 3M4

π)

]
, (A.3)

where

ΣPQ = M2
P + M2

Q.

Finally, MBorn
e2p2 represents the counterterms contribu-

tion of O(e2p2). It springs up from the NLO Lagrangian
in the electromagnetic sector and reads

MBorn
e2p2 =

2e2

27F 2
0

(
12Kr

1 + 12Kr
2 + 54Kr

3 + 27Kr
4



A. Nehme: Isospin breaking in low-energy charged pion–kaon elastic scattering 715

+ 10Kr
5 + 10Kr

6

)
(ΣπK − u) − 2e2

27F 2
0

(
6Kr

1 + 6Kr
2

+ 54Kr
3 + 27Kr

4 − 4Kr
5 + 50Kr

6

)
(ΣπK − s)

− 4e2

27F 2
0

(3Kr
1 + 57Kr

2 + 7Kr
5 + 34Kr

6)(ΣπK − t)

+
4e2

27F 2
0

[
3(M2

π + M2
K)K7 + 3(31M2

π + 43M2
K)Kr

8

+ (4M2
π + M2

K)Kr
9 + (94M2

π + 91M2
K)Kr

10

+ 90(M2
π + M2

K)Kr
11

]
. (A.4)

The tadpole-type part of the amplitude is provided by
diagram (b) in Fig. 1. Its result is shown by keeping apart
individual contributions from each meson loop

Mtadpole =
µπ0

36F 2
0

[
6u − t + 6∆π−K+ − 24∆π

+
2ε√

3
(3t + 2M2

π + 4M2
K)

]

+
µη

36F 2
0

[
6u − 3t − 6M2

π± + 2M2
K± − 20∆π

− 6ε√
3

(t − 2M2
π + 4M2

K)

]

+
µπ±

18F 2
0

(12u + 3t − 8M2
π± − 12M2

K± − 72∆π)

+
µK0

9F 2
0

[
− 2t + 2M2

K± + M2
π± − 3∆π

+
4ε√

3
(M2

K − M2
π)

]

+
µK±

18F 2
0

(12u + 3t − 12M2
π± − 8M2

K± − 72∆π). (A.5)

Concerning the unitary corrections following from dia-
gram (b) and its two crossed ones in Fig. 1, they will be
separated according to the channel specifying each crossed
diagram. Moreover, the contribution of each channel will
be divided into parts labelled by the kind of particles prop-
agating inside the loop. For instance, in the s-channel

Ms−channel = Ms−channel
π−K+ + Ms−channel

π0K0 + Ms−channel
ηK0 ,

where

Ms−channel
π−K+ =

1
36F 4

0

{
6F 2

0 µK±(s − ∆π−K+ + 4∆π)

+ (s + ∆π−K+ + 6∆π)2B̄(M2
π± ,M2

K± ; s)

+ 2(s − 3∆π−K+)(s + ∆π−K+ + 6∆π)B̄1(M2
π± ,M2

K± ; s)

+ (s − 3∆π−K+)2B̄21(M2
π± ,M2

K± ; s)

+ 2s[2M2
π± − t + 4(u − t − ∆π−K+)]

× B̄22(M2
π± ,M2

K± ; s)

}

Ms−channel
π0K0 =

1
8F 4

0

{
2F 2

0 µK0

(
1 +

2ε√
3

)

× (3s − 3M2
π0 − M2

K0)

+
[
s − Σπ0K0 +

ε√
3

(s − 9M2
π + 7M2

K)
]2

B̄(M2
π0 ,M2

K0 ; s)

+ 2
[
s − Σπ0K0 +

ε√
3

(s − 9M2
π + 7M2

K)
]

×
[
s − ∆π−K+ +

ε√
3

(s + 3∆πK)
]
B̄1(M2

π0 ,M2
K0 ; s)

+
[
s − ∆π−K+ +

ε√
3

(s + 3∆πK)
]2

B̄21(M2
π0 ,M2

K0 ; s)

+ 2s
[
2M2

K± − t +
2ε√

3
(t − 2u + 2M2

π)
]

× B̄22(M2
π0 ,M2

K0 ; s)

}
,

Ms−channel
ηK0 =

1
24F 4

0

{
2F 2

0 µK0

(
1 − 3ε√

3

)

×
[
3s − 3M2

η − M2
K0 − 3ε√

3
(3s − M2

K − 3M2
η )
]

+
[
s + 7M2

η − 9M2
K0 − ε√

3
(3s + 17M2

π − 23M2
K)
]2

× B̄(M2
η ,M

2
K0 ; s) + 2

[
s + 3∆π−K+ − 3ε√

3
(s − ∆πK)

]

×
[
s + 7M2

η − 9M2
K0 − ε√

3
(3s + 17M2

π − 23M2
K)
]

× B̄1(M2
η ,M

2
K0 ; s) +

[
s + 3∆π−K+ − 3ε√

3
(s − ∆πK)

]2
× B̄21(M2

η ,M
2
K0 ; s) + 2s

[
4u − 5t + 4M2

π± − 2M2
K±

− 6ε√
3

(t − 2u + 2M2
π)
]
B̄22(M2

η ,M
2
K0 ; s)

}
. (A.6)

The loop functions shown in (A.6) and in what follows are
discussed in Appendix B; the quantity ∆PQ stands for

∆PQ = M2
P − M2

Q.

A similar notation holds for the t- and u-channels:

Mt−channel = Mt−channel
π0π0 + Mt−channel

ηη + Mt−channel
π0η

+ Mt−channel
π+π− + Mt−channel

K0K̄0 + Mt−channel
K+K− ,

Mu−channel = Mu−channel
π−K+ , (A.7)

which individual parts are given by

Mt−channel
π0π0 =

1
36F 4

0

{
− 2F 2

0 µπ0

×
[
−5t + 3M2

π0 +
6ε√

3
(−5t + 3M2

π + 4M2
K)
]
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+
3
2

(t − M2
π0)
[
3t +

6ε√
3

(3t − 4M2
K)
]

× B̄(M2
π0 ,M2

π0 ; t)

}
,

Mt−channel
ηη =

M2
π0

72F 4
0

{
12F 2

0

(
1 − 2ε√

3

)
µη

+
[
9t − 6M2

η − 2M2
π0 − 2ε√

3
(9t + 8M2

π − 20M2
K)
]

× B̄(M2
η ,M

2
η ; t)

}
,

Mt−channel
π0η = − 1

12F 4
0

(
ε√
3

)

×
{

2F 2
0 µπ(5t − 6M2

π − 2M2
η ) + 2F 2

0 µη(5t − 4Σπη)

+ (3t − 4M2
π)(3t − 3M2

η − M2
π)B̄(M2

π ,M
2
η ; t)

}
,

Mt−channel
π+π− =

1
18F 4

0

{
− 3

16π2

(
M2

π± − t

6

)
(s − u)

+ F 2
0 µπ± [5t + 24∆π + 3(s − u)]

+
[

9
4
t(t + 8∆π) − 3(s − u)

(
M2

π± − t

4

)]

× B̄(M2
π± ,M2

π± ; t)

}
,

Mt−channel
K0K̄0 =

1
36F 4

0

{
F 2

0 µK0 [5t − 3(s − u)]

+
3

16π2

(
M2

K0 − t

6

)
(s − u)

+
[

9
4
t2 + 3(s − u)

(
M2

K0 − t

4

)]

× B̄(M2
K0 ,M2

K0 ; t)

}
,

Mt−channel
K+K− =

1
18F 4

0

{
F 2

0 µK± [5t + 3(s − u) + 24∆π]

− 3
16π2

(
M2

K± − t

6

)
(s − u)

+
[

9
4
t(t + 8∆π) − 3(s − u)

(
M2

K± − t

4

)]

× B̄(M2
K± ,M2

K± ; t)

}
,

Mu−channel
π−K+ =

1
9F 4

0

{
− 6F 2

0 µK±(Σπ−K+ − u + 2∆π)

+ (2M2
π± + M2

K± − u + 3∆π)2B̄(M2
π± ,M2

K± ;u)

− 2u(2M2
π± + M2

K± − u + 3∆π)B̄1(M2
π± ,M2

K± ;u)

+ u2B̄21(M2
π± ,M2

K± ;u) + u2B̄22(M2
π± ,M2

K± ;u)

}
.

(A.8)

With regard to the one-photon contributions, they will be
classified with respect to the topology of the exchanged
photon

Mone−photon = Mone−photon
vertex−leg + Mone−photon

s−channel

+ Mone−photon
t−channel + Mone−photon

u−channel .

We distinguish a tadpole-type contribution schema-
tized by diagram (e) in Fig. 1 and for which we found

Mone−photon
vertex−leg =

2e2

3F 2
0

[
(u + ∆πK)

(
−6F 2

0 µ̃π +
1

4π2

)

+ (u − ∆πK)
(

−6F 2
0 µ̃K +

1
4π2

)]
.

We also distinguish a unitary contribution given by
diagram (d) in Fig. 1. The expressions relative to the dif-
ferent channels defined by the exchanged photon topology
read

Mone−photon
s−channel =

e2

3F 2
0

{
1
2
F 2

0 µ̃π

× [3(t − u) − 12(ΣπK − u) + s − 2∆πK ] +
1
2
F 2

0 µ̃K

× [3(t − u) − 12(ΣπK − u) + s + 2M2
π − 6M2

K ]
+ (s − 3M2

π − M2
K)B̄(M2

π ,M
2
K , s)

+ (3∆πK − s)B̄1(M2
π ,M

2
K , s)

+ 2(ΣπK − s)[3(u − t) + 2ΣπK − s]G−
πK(s)

+ 8∆πK(ΣπK − s)G+
πK(s)

+ 6(ΣπK − u)(ΣπK − s)GπK(s)

+ 6(ΣπK − u)
(

1
16π2

)}
,

Mone−photon
t−channel =

e2

6F 2
0

{
− 2F 2

0 µ̃π

×
[
6(ΣπK − u) − 3

2
(2M2

π − t)
]

− 3(ΣπK − u)B̄(M2
π ,M

2
π , t)

− 1
16π2

[
−9(ΣπK − u) − 1

2
(t − 8M2

π)
]

+ 6(2M2
π − t)(ΣπK − u)Gππ(t)

− 3
2

(s − u)(4M2
π − 3t)G−

ππ(t)

}

+
e2

6F 2
0

{
−2F 2

0 µ̃K

[
6(ΣπK − u) − 3

2
(2M2

K − t)
]

− 3(ΣπK − u)B̄(M2
K ,M2

K , t)

− 1
16π2

[
−9(ΣπK − u) − 1

2
(t − 8M2

K)
]
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+ 6(2M2
K − t)(ΣπK − u)GKK(t)

− 3
2

(s − u)(4M2
K − 3t)G−

KK(t)
}

,

Mone−photon
u−channel = − e2

3F 2
0

{
F 2

0 µ̃π(5u − 5M2
K − 7M2

π)

+ F 2
0 µ̃K(5u − 5M2

π − 3M2
K)

+ 2(M2
K − u)B̄(M2

π ,M
2
K , u) + 2uB̄1(M2

π ,M
2
K , u)

− 4(ΣπK − u)(2ΣπK − u)G−
πK(u)

− 4∆πK(ΣπK − u)G+
πK(u) (A.9)

+ 6(ΣπK − u)2GπK(u) + 6(ΣπK − u)
(

1
16π2

)}
.

Finally, the result for diagram (f) in Fig. 1 can be put in
the following form:

Mformfactor = e2
(

u − s

t

)
[1 + Γπ(t) + ΓK(t)],

where Γπ and ΓK represent the electromagnetic vertex
functions for the pion and kaon respectively [51]

Γπ(t) =
t

F 2
0

[
2Lr

9 − 1
96π2

(
ln

M2
π

µ2 +
1
2

ln
M2

K

µ2

)]

− 2
3F 2

0

[(
M2

π − t

4

)
B̄(M2

π ,M
2
π , t) +

1
16π2

t

12

]

− 1
3F 2

0

[(
M2

K − t

4

)
B̄(M2

K ,M2
K , t) +

1
16π2

t

12

]
,

ΓK(t) =
t

F 2
0

[
2Lr

9 − 1
96π2

(
ln

M2
K

µ2 +
1
2

ln
M2

π

µ2

)]

− 1
3F 2

0

[(
M2

π − t

4

)
B̄(M2

π ,M
2
π , t) +

1
16π2

t

12

]

− 2
3F 2

0

[(
M2

K − t

4

)
B̄(M2

K ,M2
K , t) +

1
16π2

t

12

]
.

(A.10)

B Loop functions

The loop functions we use in our calculations follow the
notations of [52]. Analytic expressions were given in [25].
For completeness we recall the expression for the following
function

B(x, y) = −
√

(x − y)(2x + y)
12π2(x + y)

×
{

arctan

[√
(x − y)(2x + y)

2(x − y)

]

+ arctan

[
x + 2y

2
√

(x − y)(2x + y)

]}
. (B.1)

For the threshold expansion of the processes analyzed in
this paper, we need the following expressions for the two-
point functions defined in [25]

ReJ̄(M2
π± ,M2

K± ,M2
±)

=
1

16π2

(
1 ∓ Mπ±MK±

M2
K± − M2

π±
ln

M2
π±

M2
K±

)
,

ReJ̄(M2
π0 ,M2

K0 ,M2
±)

=
1

16π2

(
1 ∓ Mπ±MK±

M2
K± − M2

π±
ln

M2
π±

M2
K±

)

+
∆π

32π2

{
2

M2
K − M2

π

(
2 ∓ MK

Mπ

)
+

1
(M2

K − M2
π)2

× [2(2M2
K + M2

π) − (MK ± Mπ)2] ln
M2

π

M2
K

}

− ∆K

32π2

{
2

M2
K − M2

π

(
2 ∓ Mπ

MK

)
+

1
(M2

K − M2
π)2

× [2(M2
K + 2M2

π) − (MK ± Mπ)2] ln
M2

π

M2
K

}
,

ReJ̄(M2
η ,M

2
K0 ,M2

±)

=
1

16π2 [1 + 16π2B(MK± ,±Mπ±)] +
1

48π2

1
M2

K± − M2
π±

× (5MK± ∓ 2Mπ±)(2MK± ± Mπ±) ln
M2

η

M2
K±

− 1
96π2

∆π

M2
K − M2

π

[
12π2

(
MK ± 2Mπ

2MK ± Mπ

)
B(MK ,±Mπ)

+ 2
(

MK ∓ Mπ

2MK ∓ Mπ

)

−
(

19M2
K ∓ 2MKMπ + M2

π

M2
K − M2

π

)
ln

M2
η

M2
K

]

− 1
96π2

∆K

M2
K − M2

π

[
12π2

(
8MK ± 7Mπ

2MK ± Mπ

)
B(MK ,±Mπ)

− 2
(

16MK ∓ 7Mπ

2MK ∓ Mπ

)

+
(

37M2
K ∓ 2MKMπ − 17M2

π

M2
K − M2

π

)
ln

M2
η

M2
K

]
, (B.2)

and evaluated at

M± = Mπ± ± MK± .

Finally, we quote the expression of the infrared di-
vergent three-point function with the corresponding cut
structure needed for the calculation of diagram (d) in
Fig. 1 with the various channels defined in (A.9)

32π2λ
1/2
PQ(p2)GPQ(p2) = 2Li2

[
p2 + ∆PQ + λ

1/2
PQ(p2)

p2 + ∆PQ − λ
1/2
PQ(p2)

]

−2Li2

[
p2 − ∆PQ − λ

1/2
PQ(p2)

p2 − ∆PQ + λ
1/2
PQ(p2)

]
−
{

ln
[
λPQ(p2)
p2m2

γ

]

− 1
2

ln

[
[∆PQ − λ

1/2
PQ(p2)]2 − p4

[∆PQ + λ
1/2
PQ(p2)]2 − p4

]
− iπΘ(p2)

}
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×
{

ln

[
[p2 − λ

1/2
PQ(p2)]2 − ∆2

PQ

[p2 + λ
1/2
PQ(p2)]2 − ∆2

PQ

]

+2iπΘ
[
p2 − (MP + MQ)2

]}
. (B.3)

In this expression, Θ stands for the Heaviside function,
λPQ for the Källén function

λPQ(p2) ≡ [p2 − (MP + MQ)2
] [

p2 − (MP − MQ)2
]
,

and the dilogarithm function is defined by

Li2(z) ≡ −
∫ z

0
dt

ln(1 − t)
t

.

Notice that in the equal mass limit (MP = MQ), the
function (B.3) reduces to the one given in [20].
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